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1. Introduction

The subject of deformed quantum field theories has attracted renewed attention in re-

cent years due to their natural appearance in string theory. Initial studies were devoted

to theories on non-commutative spacetime in which the commutator of the spacetime co-

ordinates becomes non-zero. More recently [1]–[9], non-anticommutative supersymmetric

theories have been constructed by deforming the anticommutators of the grassman co-

ordinates θα (while leaving the anticommutators of the θα̇ unaltered). Consequently, the

anticommutators of the supersymmetry generators Qα̇ are deformed while those of the

Qα are unchanged. Non-anticommutative versions of the Wess-Zumino model and su-

persymmetric gauge theories have been formulated in four dimensions [10, 11] and their

renormalisability discussed [12]–[16], with explicit computations up to two loops [17] for

the Wess-Zumino model and one loop for gauge theories [18]–[22].

More recently still, non-anticommutative theories in two dimensions have been con-

sidered. On the one hand non-anticommutative versions of particular non-linear σ-models

have been constructed (by dimensional reduction from four dimensions) [23] and the one-

loop corrections computed [24]; on the other hand a non-anticommutative version of the

general N = 2 Kähler σ-model has been constructed directly in two dimensions, initially

in refs. [25, 26] but then given an elegant reformulation in refs. [27, 28]. We shall pre-

dominantly follow the notation of ref. [27], where the deformation was interpreted as a

“smearing” of the Kähler potential. The undeformed N = 2 Kähler σ-model and its

renormalisation were studied exhaustively in the context of string theory. It was thought

for a while that its only divergences were at the one-loop level where they can be inter-

preted as a correction to the Kähler metric of the form of the Ricci tensor; until explicit

calculations [29, 30] revealed a divergence at the four-loop level.
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The motivation for the present work was to investigate whether the one-loop corrections

in the deformed theory as presented in ref. [27] would exhibit a similar “smearing” as in

the classical theory. It turns out that the number of one-loop diagrams in the deformed

theory is enormous, at least in the component formulation in which we work; however,

they can be expressed in terms of differential operators implementing the undeformed

supersymmetry generators Q± (using light-cone co-ordinates in two dimensions), acting on

a simpler “kernel”. Now in fact, the undeformed classical action (in its component form)

can be expressed simply as the product of the operators representing all the supersymmetry

generators, Q± and Q±, acting on the Kähler potential. This inspired the hope that in the

non-anticommutative case, if we could construct the operators implementing the deformed

supersymmetry generators Q±, we might be able to obtain a similarly succinct form for the

deformed one-loop corrections. Accordingly, we start by giving an exact construction for

these operators to all orders in the deformation parameter. We then give our results for the

one-loop calculation, expressed in a relatively compact form in terms of the undeformed

operators for Q± acting on a kernel K. It is then easy to see that unfortunately it is

impossible to further write K in a shorter form using the operators representing Q±.

2. N = 2 supersymmetry in two dimensions

In this section we set the scene for the analysis by describing in some detail the case of

undeformed supersymmetry in two dimensions, focussing on the use of differential operators

to implement the supersymmetry and simplify the description. In two dimensions it is

convenient to use “lightcone” co-ordinates x±, θ±, θ± (a slight abuse of terminology since

in the non-anticommutative case we are obliged to work on a spacetime of Euclidean

signature). We now consider a theory with a multiplet of chiral superfields Φi(x±, θ±, θ±)

(with components ϕi, ψi, F i). We denote the conjugate fields by Φ
i
, ϕi, etc; though often

we suppress the superscripts. The simplest model is the two-dimensional N = 2 non-linear

σ-model whose action is, in (undeformed) superspace, given by

S0 =

∫

d2xd2θd2θK(Φ,Φ) (2.1)

where K is the Kähler potential.

The charges are then

Q± =
∂

∂θ±
, Q± = −

∂

∂θ±
− iθ±

∂

∂y±
, (2.2)

where

y± = x± − iθ±θ±. (2.3)

They satisfy the algebra

Q2
+ = Q2

− = {Q+, Q−} = 0,

Q
2
+ = Q

2
− = 0, {Q+, Q−} = 0,

{Q+, Q+} = −i∂+, {Q−, Q−} = −i∂−. (2.4)
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The superfields have expansions in terms of component fields given by

Φ = ϕ+ θ+ψ+ + θ−ψ− + θ+θ−F,

Φ = ϕ+ θ+
[

ψ+ − iθ+∂+ϕ
]

+ θ−
[

ψ− − iθ−∂−ϕ
]

+θ+θ−
[

F + iθ+∂+ψ− − iθ−∂−ψ+ + θ+θ−∂+∂−ϕ
]

, (2.5)

where the component fields are functions of y±, as defined in eq. (2.3). It is useful to

represent the charges Q±, Q± by differential operators q±, q0± acting on the fields, i.e.

[Q±,Φ] = q±Φ, (2.6a)
[

Q±,Φ
]

= q0±Φ (2.6b)

where

q± = ψ±

∂

∂ϕ
∓ F

∂

∂ψ∓

− i∂±ϕ
∂

∂ψ±

± i∂±ψ∓

∂

∂F
,

q0± = −ψ±

∂

∂ϕ
± F

∂

∂ψ∓

+ i∂±ϕ
∂

∂ψ±

∓ i∂±ψ∓

∂

∂F
. (2.7)

We use the superscript “0” to denote the undeformed case; since q± will be unchanged in

the deformed case, no superscript is needed for the unbarred operators. These operators

have anticommutation properties analogous to eq. (2.4), except that

{q0
+, q+} = i∂+, {q0

−, q−} = i∂−. (2.8)

Note the change in sign; the origin of this can be seen by commuting eqs. (2.6a), (2.6b)

with Q±, Q± respectively and using

[q±, Q±] = [q0±, Q±] = 0 (2.9)

(which follows from

[q±, ∂±] = [q0±, ∂±] = 0) (2.10)

in conjunction with

[A, [B,C]] + [B, [A,C]] = [{A,B}, C] (2.11)

and eq. (2.4).

The transformations of Φ, Φ induced by ǫ+Q+ + ǫ−Q− + ǫ+Q+ + ǫ−Q− are then given

by

δΦ = [ǫ+Q+ + ǫ−Q− + ǫ+Q+ + ǫ−Q−,Φ], (2.12)

δΦ = [ǫ+Q+ + ǫ−Q− + ǫ+Q+ + ǫ−Q−,Φ], (2.13)
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which, in view of eq. (2.5), entails

δϕ = ǫ+ψ+ + ǫ−ψ−,

δψ+ = ǫ−F + iǫ+∂+ϕ,

δψ− = −ǫ+F + iǫ−∂−ϕ,

δF = −iǫ+∂+ψ− + iǫ−∂−ψ+

δϕ = −ǫ+ψ+ − ǫ−ψ−,

δψ+ = −iǫ+∂+ϕ− ǫ−F,

δψ− = −iǫ−∂−ϕ+ ǫ+F,

δF = iǫ+∂+ψ− − iǫ−∂−ψ+. (2.14)

By virtue of eqs. (2.5), (2.6a), (2.6b) we can also write

δϕ = (ǫ+q+ + ǫ−q− + ǫ+q+ + ǫ−q−)ϕ, (2.15)

with similar expressions for the other component fields.

The effect of the
∫

d2θd2θ in eq. (2.1) is to yield the component action as the θ2θ2

term in the expansion of K(Φ,Φ), giving

S0 =

∫

d2x
[

Kj∂+∂−ϕ
j +Kjk∂+ϕ

j∂−ϕ
k +Kij

(

iψi
+∂−ψ

j
+ + iψi

−∂+ψ
j
− + F iF j

)

−Kikjψ
i
+ψ

k
−F

j −Kikjψ
i
+ψ

k
−F

j + iKijk

(

ψi
+ψ

j
+∂−ϕ

k + ψi
−ψ

j
−∂+ϕ

k
)

+Kijijψ
i
+ψ

j
−ψ

i
+ψ

j
−

]

, (2.16)

where Ki = ∂K
∂ϕi . It is easily verified using eqs. (2.7), (2.16), that

q±S0 = q0±S0 = 0, (2.17)

which demonstrates the invariance of the action under supersymmetry transformations

(according to eq. (2.15)).

The action eq. (2.16) can also be written using the operators q±, q0± as

S0 =

∫

d2xq−q+q
0
−q

0
+K; (2.18)

which of course guarantees eq. (2.17) due to the nilpotency of q±, q0±, which in turn follows

from that of Q±, Q± in eq. (2.4). There is something intriguingly reminiscent of the BRST

formalism in the use of nilpotent operators to obtain an invariant expression. It is worth

mentioning that after eliminating the auxiliary fields F , F using their equations of motion,

the action may be written in the form

S0 =

∫

d2x
[

gij

(

∂+ϕ
i∂−ϕ

j + iψi
+∂−ψ

j
+ + iψi

−∂+ψ
j
−

)

+Riijjiψ
i
+ψ

j
−ψ

i
+ψ

j
−

]

(2.19)

where Riijj is the Riemann tensor constructed from the Kähler metric gij ≡ Kij . This

form is manifestly generally covariant with respect to this metric.
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At the quantum level the renormalisation of the model may be achieved by replacing

the classical Kähler potential by a bare version, KB , chosen so as to cancel the ultravi-

olet divergences order by order. Using the standard dimensional regularisation with the

spacetime dimension continued to d = 2 − ǫ, at one loop we have simply

KB = K +
1

2πǫ
tr lnKij . (2.20)

This corresponds to replacing the Kähler metric by

gBij = gij +
1

2πǫ
Rij (2.21)

where Rij is the Ricci tensor. As mentioned in the introduction, the next divergence

appears at the four-loop level [29, 30]. Just as the classical action may be obtained by the

operators q±, q0± acting on K as in eq. (2.18), we may write

S0B =

∫

d2xq−q+q
0
−q

0
+KB , (2.22)

so that in particular q−q+q
0
−q

0
+tr lnKij has the effect of reproducing the one-loop diver-

gences, in a somewhat compact form.

3. Non-anticommutative supersymmetry in two dimensions

In this section we repeat the analysis of the previous section for the case of deformed

two-dimensional supersymmetry. For the deformed version we take

(θ±)2 = (θ±)2 = 0, {θ+, θ−} = 0, {θ+, θ−} =
1

M
. (3.1)

The charges then satisfy the algebra

Q2
+ = Q2

− = {Q+, Q−} = 0,

Q
2
+ = Q

2
− = 0, {Q+, Q−} = −

4

M

∂2

∂y+∂y−
,

{Q+, Q+} = −i∂+, {Q−, Q−} = −i∂−. (3.2)

The non-anticommutativity is implemented at the level of superfields by introducing the

star-product, which satisfies

θ+ ∗ θ− = θ+θ− +
1

2M
, θ− ∗ θ+ = −θ+θ− +

1

2M
,

θ+ ∗ θ+θ− = −
1

2M
θ+, θ− ∗ θ+θ− =

1

2M
θ−,

θ+θ− ∗ θ+θ− =
1

4M2
. (3.3)

We now wish to construct differential operators q± representing the effects of Q± in the

deformed case in a similar manner to eq. (2.6a), (2.6b), extending q0± given in eq. (2.7) for
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the undeformed case. (The operators q± are unchanged by the deformation.) We start by

examining the effects of Q± on powers of Φ alone, since mixed products of Φ and Φ present

additional complications. Defining

I(n)
r =

∫ 1

2

− 1

2

dξ

(

ξ

M

)r (

ϕ+
ξ

M
F

)n

(3.4)

it is straightforward to show using the methods of ref. [27] that

Φn
∗ = (1 + θ+q+)(1 + θ−q−)

(

I
(n)
0 − q+q−I

(n)
1

)

, (3.5)

where Φn
∗ denotes the star-product of n Φ’s. Then acting on Φn

∗ , Q± are represented by

qΦ+ = q0+ −
i

2M
∂+q− + i

(

− q′+q
′
−[∂′+q

′
−]Õ + ∂′+q

′
−O + [∂′+q

′
−]O

)

,

qΦ− = q0− −
i

2M
∂−q+ − i

(

− q′+q
′
−[∂′−q

′
+]Õ + ∂′−q

′
+O + [∂′−q

′
+]O

)

. (3.6)

Here a prime denotes the part of the operator containing derivatives with respect to the

chiral (but not the anti-chiral) fields, and correspondingly

∂′± = ∂±ϕ
∂

∂ϕ
+ ∂±ψ+

∂

∂ψ+
+ ∂±ψ−

∂

∂ψ−

+ ∂±F
∂

∂F
. (3.7)

Moreover,

[∂′+q
′
−] = ∂+ψ−

∂

∂ϕ
+ ∂+F

∂

∂ψ+
, (3.8)

and

OI
(n)
0 = I

(n)
1 ,

OI
(n)
1 = I

(n)
2 − ÕI

(n)
0 . (3.9)

These properties are guaranteed by the following definitions:

O =
∞
∑

r=1

ar

(

1

M2

)r (

F
∂

∂ϕ

)2r−1

,

Õ =

∞
∑

r=1

(2r − 1)ar

(

1

M2

)r (

F
∂

∂ϕ

)2r−2

, (3.10)

where the ar must satisfy for each n ≥ 1

n−1
∑

r=0

an−r

22r(2r + 1)(2r)!
=

1

22n(2n + 1)(2n − 1)!
. (3.11)

We have been unable to find a closed form for the ar; the first few, determined recursively,

being

a1 =
1

12
, a2 = −

1

720
, a3 =

1

25.33.5.7
. (3.12)
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To check that the operators in eq. (3.6) do indeed represent the operators Q± according to

[Q±,Φ
n
∗ ]∗ = qΦ±Φn

∗ (3.13)

(where [ , ]∗ represents the commutator evaluated using star-products) we need to use

eqs. (3.9) in conjunction with

q0′+I
(n)
r = −i[∂′+q

′
−]I

(n)
r+1, q0′−I

(n)
r = i[∂′−q

′
+]I

(n)
r+1,

q′′+I
(n)
0 = q′′−I

(n)
0 = q′′+I

(n)
1 = q′′−I

(n)
1 = 0. (3.14)

where a double prime denotes the part of the operator containing derivatives with respect

to the anti-chiral (but not the chiral) fields.

It is easy to check that the operators in eq. (3.6) satisfy the anticommutation relations

of eq. (3.2), using
[

q0±, F
∂

∂ϕ

]

= ∓i[∂′±q
′
∓] (3.15)

(which implies

[q0±,O] = ∓i[∂′±q
′
∓]Õ). (3.16)

When acting on products of both Φ and Φ the situation is more complicated, and the

operators representing Q± will require modification. We have Φn
∗ = Φn and we find

Φn
∗ ∗ Φm = (1 + θ+q+)(1 + θ−q−)

[

1 − θ+

(

q0′′+ −
i

2M
∂′′+q

′
−

)][

1 − θ−
(

q0′′− −
i

2M
∂′′−q

′
+

)]

(

I
(n)
0 − q+q−I

(n)
1

)

ϕm. (3.17)

We then have

[

Q+,Φ
n
∗ ∗ Φm

]

∗
=

{

qΦ+ −
i

2M
(∂′′+q

′
− − ∂′+q

′′
−)

}

Φn
∗ ∗ Φm,

[

Q−,Φ
n
∗ ∗ Φm

]

∗
=

{

qΦ− −
i

2M
(∂′′−q

′
+ − ∂′−q

′′
+)

}

Φn
∗ ∗ Φm. (3.18)

On the other hand we have

Φm ∗ Φn
∗ = (1 + θ+q+)(1 + θ−q−)

[

1 − θ+

(

q′′+ +
i

2M
∂′′+q

′
−

)][

1 − θ−
(

q′′− +
i

2M
∂′′−q

′
+

)]

(

I
(n)
0 − q+q−I

(n)
1

)

ϕm, (3.19)

and correspondingly

[

Q+,Φ
m ∗ Φn

∗

]

∗
=

{

qΦ+ +
i

2M
(∂′′+q

′
− − ∂′+q

′′
−)

}

Φm ∗ Φn
∗ ,

[

Q−,Φ
m ∗ Φn

∗

]

∗
=

{

qΦ− +
i

2M
(∂′′−q

′
+ − ∂′−q

′′
+)

}

Φm ∗ Φn
∗ . (3.20)

We see from eqs. (3.18), (3.20) that the operators representing Q± are modified in differ-

ent ways depending on whether they act on Φn
∗ ∗ Φm or Φm ∗ Φn

∗ . It is unusual to find

– 7 –
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that the representation of the operator depends on the ordering of the term on which it

acts. However, fortunately we are only interested in the deformed version of the Kähler

potential, in which each term should be defined as a symmetrised star-product of Φ’s and

Φ’s, and therefore the ordering question will not arise. For such a symmetrised product,

the representations of Q± will again be different from those given in eq. (3.6). For an

undeformed Kähler potential

K[Φ,Φ] =
∑

n,m

Kn,mΦnΦm, (3.21)

the natural definition of the deformed Kähler potential is

K∗[Φ,Φ] =
∑

n,m

Kn,m[ΦnΦm]∗, (3.22)

where [ΦnΦm]∗ represents the symmetrised star-product of n Φ’s and m Φ’s. It can be

shown that

K∗[Φ,Φ] = (1 + θ+q+)(1 + θ−q−)
(

1 − θ+q0′′+

) (

1−θ−q0′′−

)

[K0(ϕ,F, ϕ)−q+q−K1(ϕ,F, ϕ)]

−
1

4M2
θ+θ−q′+q

′
−∂

′′
+∂

′′
−K0(ϕ,F, ϕ), (3.23)

where

Km(ϕ,F, ϕ) =

∫ 1

2

− 1

2

dξξmK

(

ϕ+
ξ

M
F,ϕ

)

. (3.24)

The symmetrisation has resulted in the disappearance of most of the terms involving a 1
2M

in eqs. (3.17), (3.19). Correspondingly we no longer need the 1
2M

terms in eqs. (3.18), (3.20).

However, the residual 1
4M2 term requires a modification of the operators given in eqs. (3.6),

so that

q+ = q0+ −
i

2M
∂+q− −

i

4M2
(∂′′+q

′
+q

′
−q

′′
− + ∂′+q

′
−q

′′
+q

′′
−)

+i(−q′+q
′
−[∂′+q

′
−]Õ + ∂′+q

′
−O + [∂′+q

′
−]O),

q− = q0− −
i

2M
∂−q+ +

i

4M2
(−∂′′−q

′
+q

′
−q

′′
+ + ∂′−q

′
+q

′′
+q

′′
−)

−i(−q′+q
′
−[∂′−q

′
+]Õ + ∂′−q

′
+O + [∂′−q

′
+]O), (3.25)

We can verify that these operators do indeed implement the operators Q± according to

[Q±,K∗]∗ = q±K∗, (3.26)

using the analogue of eq. (3.9) for the Kähler potential,

OK0 = K1,

OK1 = K2 − ÕK0 (3.27)

together with the analogue of eq. (3.14),

q′+Kr = −i[∂′+q
′
−]Kr+1, q′−Kr = i[∂′−q

′
+]Kr+1,

q′′+K0 = q′′−K0 = q′′+K1 = q′′−K1 = 0. (3.28)

– 8 –
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The action is given by the θ2θ2 term and hence from eq. (3.23)

S =

∫

d2xq−q+q
′′
−q

′′
+(K0 − q+q−K1), (3.29)

which can be expanded as [25] -[27]

S =

∫

d2x
{

∂jK0∂+∂−ϕ
j + ∂j∂kK0∂+ϕ

j∂−ϕ
k + ∂i∂jK0

(

iψi
+∂−ψ

j
+ + iψi

−∂+ψ
j
− + F iF j

)

−∂i∂k∂jK0ψ
i
+ψ

k
−F

j−∂i∂k∂jK0ψ
i
+ψ

k
−F

j +i∂i∂j∂kK0

(

ψi
+ψ

j
+∂−ϕ

k+ψi
−ψ

j
−∂+ϕ

k
)

+∂i∂j∂i∂jK0ψ
i
+ψ

j
−ψ

i
+ψ

j
− +

1

M

(

∂i∂jK1F
i∂+∂−ϕ

j − ∂i∂k∂jK1ψ
i
+ψ

k
−∂+∂−ϕ

j

+∂i∂j∂kK1F
i∂+ϕ

j∂−ϕ
k − ∂i∂k∂j∂kK1ψ

i
+ψ

k
−∂+ϕ

j∂−ϕ
k
)}

. (3.30)

It can then be checked that also

S =

∫

d2xq−q+q−q+(K0 − q+q−K1) =

∫

d2xq−q+q−q+K0. (3.31)

Note that in eq. (3.29), the K1 term is indispensable and is entirely responsible for the

K1 terms in eq. (3.30); while in eq. (3.31), the K1 term is redundant and can be omitted,

leading to a form for the action similar to eq. (2.18) in the undeformed case. The K1 terms

in eq. (3.30) are generated from eq. (3.31) by applying eq. (3.27).

Finally, from eq. (3.31), we see that (as in the undeformed case) the nilpotency of q±,

q±, which follows from that of Q±, Q± in eq. (3.2), ensure

q±S = q±S = 0; (3.32)

so that the deformed action is invariant under the action of q± and q±.

4. One-loop corrections

Our goal was to investigate the one-loop corrections for the deformed theory, and see

whether they could be interpreted in terms of a “smearing” of the background geometry

as at the classical level. It seemed reasonable to do this order by order in 1
M2 . (Note that

Ki is a power series in 1
M2 , starting at 1

M0 for i even and 1
M

for i odd). We then had

to make a choice of method, since the computation of the one-loop and higher quantum

corrections for the undeformed Kähler σ-model may be performed in several different ways.

The superspace computation [29] is the most efficient, though it has the disadvantage that

it conceals the generally covariant form of the results, i.e. that they can be expressed in

terms of the Kähler metric and its associated Riemann tensor in a generally covariant

way. The covariant form of the classical action is achieved in the component formulation

upon integrating out the auxiliary fields, and computations up to four loops have also been

carried out in this formalism [30]. Superspace computations in the non-anticommutative

case have been performed in the four-dimensional context [20, 21] but the formalism is

technically rather complex; on the other hand, integrating out the auxiliary fields in the
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deformed action eq. (3.30) would be difficult and in any case it is no longer clear if general

covariance is a useful guide.

Accordingly, we decided to perform the calculation in the uneliminated component

formulation. However, it rapidly becomes apparent that there is a plethora of diagrams

to consider. We started by computing the divergences for the set of graphs with a single

insertion of a vertex with a 1
M2 factor derived from aK1 term in eq. (3.30). We then realised

that the divergent contributions from this set of graphs (numbering about 200) could be

expressed much more concisely as q−q+K for some K (which we call a kernel). With this as

a guide, we were then able to construct the corresponding K for the full set of one-loop 1
M2

diagrams, explicitly computing only a small subset of these to serve as a check. Of course,

this is reminiscent of the fact remarked on earlier that in the undeformed case the one-loop

quantum corrections may be written in terms of q−q+q
0
−q

0
+tr lnKij . The full kernel, K

(1)
B ,

is displayed in the appendix using a convenient diagrammatic notation. It is tempting to

wonder if the analogy with the undeformed case goes further so that we may write

S
(1)
B =

∫

d2xq−q+q−q+K̃
(1)
B (4.1)

for some underlying K̃
(1)
B , where q± are the deformed operators constructed in eq. (3.25);

indeed this was our motivation for constructing these operators in the first instance. Unfor-

tunately this turns out not to be the case, as is easily seen: focussing on the set of graphs

in K
(1)
B with five vertices, four with a single fermion and one with an F , it can be seen that

the graphs with six vertices, five with one fermion and one with an F , (and no derivatives)

created by the action of q+ on this set do not cancel. In drawing this conclusion we can

restrict attention to the effect of q0+ since the remaining terms in q+ all contain derivatives.

Since this is the only source of graphs of this type in q+K
(1)
B , we see that q+K

(1)
B 6= 0 (and

by the same token q−K
(1)
B 6= 0). Therefore q−q+q+K

(1)
B 6= 0 and q−q+q−K

(1)
B 6= 0) (consider

for instance those graphs for which q−q+ simply attaches an F at the vertex already con-

taining an F ); and so q+S
(1)
B 6= 0, q−S

(1)
B 6= 0. This immediately implies (due once again

to the nilpotency of q±) that S
(1)
B cannot be of the form eq. (4.1). It is noteworthy that

the classical behaviour is not reproduced at the quantum level, and in particular that the

one-loop effective action is not invariant under q±, even though the classical action was.

5. Conclusions

We have constructed differential operators which express the non-anticommutative super-

symmetry according to

[Q±,Φ] = q±Φ, [Q±,Φ] = q±Φ (5.1)

and which therefore reproduce the deformed algebra in eq. (3.2). It then follows from the

fact that the classical action may be written S =
∫

d2xq−q+q−q+K0 and the nilpotency of

q±, q± that q±S = q±S = 0. However, we then examined the one-loop effective action and

showed that although we could express the one-loop divergences as

S
(1)
B =

∫

d2xq−q+K
(1)
B , (5.2)
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it was not possible in turn to write K
(1)
B = q−q+K̃

(1)
B for some K̃

(1)
B . Correspondingly, al-

though q±S
(1)
B = 0, q±S

(1)
B 6= 0. In fact, an invariance of the classical action can be shown to

lead directly to an invariance of the quantum effective action only in simple cases, namely

for linear transformations of the fields; such as, indeed, the transformations corresponding

to q±. In the case of non-linear transformations, the transformation properties of the effec-

tive action are expressed through Ward identities. In the case at hand, the effect of q± on a

single field is in fact linear, though the effect on functions of the fields is more complicated.

The fact that q±S = 0 implies q±S
(1)
B = 0 is therefore easy to understand. How-

ever, it would also be interesting to try to prove to all orders the stronger statement, that

SB =
∫

d2xq−q+KB for an appropriate KB , which we have shown to be valid at one loop

and first order in 1
M2 . Our original motivation in embarking on this calculation was to see if

the “smearing” of the classical geometry was mirrored at the quantum level. This seems un-

likely in view of the non-renormalisability of the theory, manifested here by the appearance

of divergent terms in the one-loop effective action with, for instance, 6 fermion fields; and in

fact one can obtain divergent diagrams with arbitrary numbers of external legs by inserting

chains of deformed vertices of indefinite length into appropriate “propagators” in a given

divergent diagram. The N = 1
2 gauge theory in four dimensions, albeit power-counting

non-renormalisable, turned out to have only a finite number of types of counterterm. This

property is associated with the non-hermiticity of the theory, a generic feature of these

deformed supersymmetric theories; but in the four-dimensional case this can be codified as

a kind of R-parity [16] which severely restricts the types of counterterm; presumably such

an effect is absent in two dimensions. The combination of non-renormalisability and the

novel form of the invariance seems likely to preclude the possibility of obtaining a succinct

form of the quantum effective action which could be interpreted in terms of a modification

of the (smeared) background geometry, though it would be interesting to investigate this

further. Of course, although we committed ourselves to working in the component formula-

tion, believing the superspace computation of quantum corrections to be very unwieldy in

the nonanticommutative case, this alternative might be worth pursuing to see if a simpler

form of the results might be achieved thereby.
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A. One-Loop kernel

We present here in largely diagrammatic form the kernel K
(1)
B for the one-loop divergences,

which are then given by q−q+K
(1)
B . Since q−q+K0 = F

i
K0i − ψ

i
+ψ

j
−K0ij, with a similar

expression for K1, the action in eq. (3.29), and hence the kernel, separates into four sections

which can separately be written as q−q+ acting on a kernel. The kernel may accordingly

– 11 –



J
H
E
P
0
5
(
2
0
0
8
)
1
0
4

� Scalar� Fermion� Auxiliary� Derivative ∂±� 1
M2 factor

� = 2
M2 � − 1

M2 �+ −� = � − �+ −� = � − �+−�±

= q± �
Figure 1: Figure conventions. Figure 2: Shorthand notation for diagrams.

be written

K
(1)
B =

∂2LM2

∂F i∂ϕj
Kij−

∂2LM2

∂F i∂F j
KikKjl(KklmF

m−Kklmnψ
mψn)+

1

24M2
(A1+A2+2A3+2A4),

(A.1)

where LM2 is the M2 term in the lagrangian of eq. (3.30) and A1−4 are expressed diagram-

matically below, in figures 3–8.

In these diagrams a “propagator” in a loop denotes K−1 and vertices denote derivatives

of K, while external lines attached to vertices represent the various fields according to the

conventions in figure 1 and the convenient shorthand notations in figure 2.

Incoming (outgoing) arrows represent chiral (antichiral) fields, respectively. The or-

dering of fermion fields is fixed by the convention that we start at the left-most field at the

top of the diagram and read clockwise around the loop. As an illustration of our notation,

the first diagram in A1 in figure 3 below represents

F iF jKijklK
mlKkn(KmnpF

p
−Kmnpqψ

p

+ψ
q

−) (A.2)

and the second represents

F iψj
+ψ

k
−KipjK

ljKjlkK
mk(KmmpF

p
−Kmmpqψ

p

+ψ
q

−)KnmKknnK
pn (A.3)

(where Kij ≡ K−1
ij

). Using ∂iK
−1 = −K−1∂iKK

−1 the effect of q± is to add external

lines and create new vertices. After acting on a diagram with q−q+, we obtain a set of

diagrams which (unless they cancel with similar contributions from other kernel diagrams)

correspond to viable one-loop Feynman graphs, the vertex with the dot or the “blob” being

the one from the deformed part of the action, and hence with an accompanying 1
M2 factor.

We observe some intriguing patterns in the groups of diagrams appearing in A1−4

above. For instance, one group of terms in A1 is repeated in A4 with the simple substitution

of a “blob” for an incoming F (and a factor of 1
2); and another group of terms in A1 may

be obtained from the former group in A1 by replacing a ψ+ followed by an adjacent ψ− (or

a ψ− followed by an adjacent ψ+) with a F −ψ+ψ− (i.e. an outgoing double line). Finally,

the graphs in A3 are similar to those of A2.
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Figure 3: Diagrams for A1.
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Figure 4: Diagrams for A1 (continued).
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Figure 5: Diagrams for A2 and A3.
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Figure 6: Diagrams for A4.
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Figure 7: Diagrams for A4 (continued).
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Figure 8: Diagrams for A4 (continued).
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